Abstract

Previous studies on silicon (Si) indicate the lithiation-induced fracture of crystalline Si nanoparticles can be greatly inhibited if their diameter is reduced to below a critical length scale around 150 nm. In this paper, in situ lithiation of individual carbon-coated Si nanoparticles (Si@C NPs) is conducted and shows that Si@C NPs will fracture during lithiation even though the diameter is much smaller than 150 nm, implying a deleterious effect of the carbon coating on the integrity of the Si@C NPs during lithiation. To shed light on this effect, finite element analysis is carried out and reveals that the carbon coating, if fractured during lithiation, will induce cracks terminating at the C/Si interface. Such cracks, upon further lithiation, can immediately propagate into the Si core due to the elevated driving force caused by material inhomogeneity between the coating and core. To prevent the fracture of the carbon coating so as to protect the Si core, a design guideline is proposed by controlling the ratio between the diameter of Si core and the thickness of carbon coating. The results in this paper should be of practical value to the design and application of Si-based core-shell structured anode materials for lithium ion batteries.

In Situ TEM Observation

Figure 1. (a) Schematic of the setup of in situ lithiation test; (b, c) TEM images of the Si@C NPs under different magnifications; (d) high resolution TEM image showing the amorphous carbon coating and the crystalline Si core as confirmed by the selected area electron diffraction pattern in (e).

Finite Element Analysis

Figure 4. (a) Schematic of FEA model of Si@C NP for evaluating the stress developed in the carbon coating during lithiation; (b) Variation of the maximum tensile stress (σ_fl) in the carbon coating of Si@C NP with lithiation. Fracture of the carbon coating takes place at ~6% lithiation. σ_fl here denotes the maximum tensile stress in the carbon coating at the full lithiation moment.

Optimal Design of Si@C NP

Figure 5. (a) Meshed finite element model for calculating the energy release rate (J-integral) near the tip of a crack terminating at the carbon/lithiated Si interface and (b) calculated J-integral as a function of the degree of lithiation. The energy release rate increases rapidly after the cracking of the carbon coating and easily exceeds the fracture energy of Li, Si due to material inhomogeneity, leading to the penetration of crack into the core and the fracture of the whole Si@C NP.

Figure 6. Maximum tensile stress at full lithiation in the carbon coating of Si@C NPs with different core diameters D and coating thicknesses t. Here, σ_fl = E_c / D or E_c / D. Larger D and smaller t result in higher σ_fl, indicating that Si@C NPs with larger D and smaller t tend to fracture during lithiation. Fracture strength of a-carbon 6 GPa < σ_c < 12 GPa. Normalized σ_fl by FEA: 0.02 < σ_fl / E_c < 0.04. Critical D/t by experiments: 3.5 < D/t < 7.0.

Conclusion

- In situ lithiation shows that the Si@C NPs fractured with Si core diameters smaller than 150 nm, which has been viewed as the maximum allowable size of bare crystalline Si nanoparticles immune to lithiation-induced fracture.
- FE simulation results indicated that excessive tensile stress will be readily developed in the carbon coating, leading to the fracture of the carbon coating. The resulting crack in the carbon coating will experience an elevated driving force for growth due to the unfavorable material inhomogeneity between the carbon coating and the lithiated Si, leading to the fracture of Si@C NP.
- A design guideline for Si@C NP is proposed by optimizing the ratio between the Si core diameter and the carbon coating thickness to avoid the cracking of carbon coating so as to maintain the integrity of Si@C NP during electrochemical cycling.

Sources of funding: General Research Fund from Hong Kong RGC (Grant No. 529313), National Natural Science Foundation of China (11322119, 11212102).

Acknowledgement: WL acknowledges Dr. Zheng-Long Xu and Prof. Jing-Ye Kim from the Hong Kong University of Science and Technology for the helpful discussion on the lithiation-induced fracture of Si@C nanoparticles, and Dr. Wei Lu from the Materials Research Center of the Hong Kong Polytechnic University for providing technical supports.